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TASK OF PREDICTING THE ROTATIONAL MOTION OF AN UN-

SYMMETRICAL TWISTED ARTIFICIAL EARTH SATELLITE

V. S. Novoselov, L. K. Babadzhanyants and

L. I. Fedorova

Equations using osculating elements L, p, a, 6, 4, 4 in the /103

general case of dynamically unsymmetrical bodies are discussed:

(1)

(2)

(I 3

6==Lsinsin coIscp I+Jsi c M2 cos +-M si
_x y (4)

c= L cos s cos )± + M1 cos+M2sin

x ly sin cos L

: . (6)

The derivation of these equations was given by F. L. Cherno-

us'ko (cf. [1]). The meaning of the letters appearing in (1)-

(6) is the same as in V. V. Beletskiy's book (cf. [2]). We will

not stop to discuss why these particular equations were selected;

the advantage of these equations for the case of fast-twisted

artificial Earth satellites is discussed in detail in Belitskiy's

book.

Equations (1)-(6)- reflect the probably (in some sense) actual

rotation of the AES in proportion to the closeness to true momen-

ts M1 , M2 , M3, where MI is the perturbing moment of all external

forces.
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In order to predict AES rotation, we must be able to solve /104

two equations.

1. To find a sufficiently close to actual vector-function for

perturbing moments M(t) (time t can appear evidently or thanks to

L, p, , , , L , p , , , , ).

2. To integrate the system (1)-(6) for a sufficiently large

time interval and sufficiently accurately.

The discussion is being conducted for the case of an AES

in circular orbits of an altitude on the order of 700 km.

2. Theoretical Formulas for Perturbing

Moments

We find that

M= II a II m,
(7)

. 11 .... 13

where M=(M,, M 2, M 3), m=(M , My, MA), a l= I

- 1 ... a33

are a matrix of direction cosines.

The system (x, y, z) is rigidly connected with the satellite.

Components aij are expressed by the Euler angles 0, $ and 4 with

the aid of formulas (1.1.5) from Beletskiy's book (cf. [1], p. 21).

As in study [3], let us write

M-= 981 (M'+M"]'+A,)+M"+M +L , (8)

MY= 2 (My M -My)- My--Lyi (9)



M,= (Mx +M!z++M)+M+M+L. ' (10)

Perturbing moments from permanent-magnet iron:

IM~'=D;H ZD;] (11)

(12)

... .. . . ( 1 3 )

Perturbing moments from soft-magnet iron:

Ml"= kHyH, kl=k22-km,
-- .(14)

M "= k2HXz, -, ka=k-- k11, (15)

rMxw = kzH;_H k3= - k22 (16)

Moments from eddy currents-

My=kwHc H - k o (H2 H2)+k(Z Z - (17)
MA=X-IxmHxY--eYWY (H~q-1iZ l:fz7. f (18)

S /x/ + 1yH z--kz(-( +H ). (19)

Perturbing moments from uncompensated kinetic momentum: /105

M= wL~ -w L (20)

(21)

(22)
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Gravitational perturbing moments:

(23)

.... 3 -Iz) alla 1 - - (24)

z20) (ly-tx) al2ali- 2
(25)

Aerodynamic perturbing moments:

- 0- cpv 0o [-Io+ 12 (a230y-a 22 ),
(26)

My+v 1(aS +a 6 a 2M v o (a+aa 21) a23+ Cpvo (a23140-- 3toy),
(27)

S 4- pO (a8 + a2a1) a2  -2 cpvo (-a 42zx--an ).
(28)

Projections of geomagnetic field intensity into connected axes

are defined in the form

'Hza3 ' (29)

(30)

r, Hi 3 - +I' 1a33-
S(31)

For a circular satellite orbit of about 700 km altitude, we

can a'ssume ' in oersteds that

H3 l t1 sin i sin o t, (32)

H 1=0,315 -3 )3 sin i cos ot,' ( 33)

.H,= 0,3 15 R3 )3 cos .R +h ). Cos  34)- (34)



Projections of angular velocity of satellite rotation will

be written thus:

" x=Pcp-+; ( cos p-a, sin p)+cos 9+40 (35)

yP222ta (32 COS 0--I2 sin )- sin rSG (36)(36)

'p,2P X3+ ( C33OS a-13 Sin p+ + (3
(37)

The derivation of formulas (7)-(37) is given in study [3]. The

same notations are used.

Expressions for a.. through L, p, a, e, , 8, t are easily
13

derived by using formulas (1.1.3) and (1.1.4) from Beletskiy's

book ([1], pp. 20-22). We find that

au=~ Tcos o 0(t-t)+j2 sin (t-). (38)

a,12 T2 Cos o0 (t--t)+ 2 sin o (t-1),
._ . ......- : ..(..... (39)

a, 3 1 3 cos 0o (t-12) + a sin (t-t). (40) /10 6
a 21 = , cos (t-t s)-i sin w (I-t 2), (41)
a 22= L2cOS o (t-tg)-2 sin (t-t),

13 sin -(42)a2gZas cos 0 (t -- tO-)- sin 0/) (- t), I42

&3;2P (45)

(46)

'a L 2 mI( + m2M2 + m , 2L ( 4 78)
3 m, a13 +2 2 (48)

P1  I ( + n2a2I n a / (50)

P2= n,a, n22 2 na22 (- (51)

(52)

(53)
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~2 a2 R~2+z J(54)
T =klja 3 +k 223 ka3 ,  ] (55)

Imn cos p sin a, (56)
m2 COS , (57)

7i sin p sin a,
(58)

nl =-sinp,
(59)

n,2-0,
" - (60)n= cos p,

k1 cos p cos , (61)
k=-sin, (62)

k2= -sin a,
(63)k=sin p cos a.
(64)

As was already noted in section 1, the problem of predicting

consists of I and II problems, whose solution requires the spe-

cification of the value of initial data L(0), ..., (0), and also
T T T

the parameters kl, k, k3, kx , k , k , D , Dy , D (or several of

them) which are known in coarse approximation. Thereafter, the

problem is solved by numerical integration of the aforementioned

equations with fixed initial conditions and known right sides.

Therefore, we can finally assert that two problems must be

solved.

A. Specification of the parameters and initial values.

B. Numerical integration in a given time interval.

But to solve problem A, we need a reiterated solution of

problem B in which we also uncover the theoretical complexity.

The fact of the matter is that in the case of a fast-twisted AES,

in equations (1)-(6) the variables 4 and i are rapidly varying

functions of time t. Thus the step-by-step numerical integration /107

of (1)-(6) (due to the small spacing on the order of 0.2-2.5 s)

in an extended interval requires a great deal of computer time.
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This work will study two appraoches to the problem of pre-

dicting orbital motion of a twisted nonsymmetrical AES: predic-

tion in a short time interval by precise (non-averaged) equations

and prediction in a long time interval by averaging with respect

to 4 and p.

3. Mathematical algorithm of integrating equations

of orbital motion of a nonsymmetrical sate-

-lite in a short time interval

10. In the right sides of equations (1)-(6) appear the mo-

ments M1 , M2, M3 . These moments are written in clear form with

the aid of formulas (7)-(64), while formulas (35)-(37) contain

derivatives of the unknown functions. All (known to us) numeri-

cal methods of solving systems of differential equations of the

first order have been developed for the case of the right sides

in which derivatives of unknown functions do not appear.

It goes without saying that we can easily apply differential

methods, especially extrapolatory, to these systems employing an

interative method of defining the derivatives at each step. We,

however, will not employ these methods both because of the enor-

mous complexity involved in compiling the tables and because the

substance of the problem under investigation requires frequent

variation of the spacing of integration during the program.

The Runge-Haine-Kutta method is free of these shortcomings,

but its application to derivative-unsolved systems causes many

problems. These problems consist,,,of the fact that at each step

we will have to four-fold apply the iteration method. Of course,

in virtue of the linearity of M1, M2' M3with respect to all de-

rivatives, we can resolve system (1)-(6) with respect to the lat-

ter. This path, however, is also unsuitable for us for the fol-
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reasons.

Given that to calculate each right side of system.(1)-(6)

we must have p operations. In resovling this system relative to

the derivatives, we will find a new system whose right sides con-

't,ain determinants of the 6th order. To calculate each element

of this determinant will require, on the average, p/6 operations;

the total to calculate (precisely) the determinant ,on an average

(61)- p/6 = 120 p operations. We can naturally calculate the

determinant roughly, but as we can easily see, this is virtually

the same as using the iteration method mentioned above. Thus,

since wx, y and wz are functions of derivatives with respect to 108

which the equations are resolved, this problem becomes much more

complicated.

20. :Below is stated a method which allows us to avoid the

problems mentioned above.

a) The values Lo, p0, 0' 0' 0' 0 at the initial point

are derived from system (1)-(6) by the iteration method; for the

initial approximations of these quantities we take quantities

equal to the right sides, if in the latter instead of the deri-

vatives are substituted the values

Po=O, ao=0,
Oo Lo sin Oo sin 0 cos co ,

o=L 0 cos 60 (-L sin2 p - cs2 o)
- r I, IC COS "

o Lo sin + 1 Cos 2  ) 

b) We will now replace, on the right sides of equations (1)

to (6) p and a by p0 and ;0, and B, $, ( by
8



=L sin 5 sin c cos 7( I-) + sin p cos -po sin,

c=L cos 0 sin2 COSy +

+ sin8 (Pocos ,+ao&sin p sin),

=L ( isin cos' (*)

C(Poos o O+ sin p sin )-*o cos Po

Let us apply to the derived system one step of the Runge-

-Haine-Kutta method. Given that this step will be h (its selec-

tion is discussed below).

c) The next step of the Runge-Haine-Kutta method is applied

to the system which is derived just as in b), but instead of the

quantities p0 and a0 , we should use pl and a1 1 and ~1 are

values of p and at point t = t0 + h, owhich have already been

calcualted according to b)).

Now about the selection of the step h. Given a fixed step

h0 . Let us solve a system with this spacing s§ in b). Then we

will solve it with h0/2 two steps according to b) and c) and again

from the initial point. If the agreement is good, we take h = ho;

otherwise, we replace h0 by h0/2 and repeat this procedure.

Our program (to reduce computer time) was composed so the

selection of spacing is only done every 50 spaces. Thus, the pro-

gram operates, so to speak, with a piecewise-continuous spacing /109

with a "piece length" of 50 spaces.

Let us mention that our method of selecting the spacing vir-

tually ensures not only sufficient accuracy of the Runge-Haine-

-Kutta method, but also the legitimacy of the aforementioned

variations in the initial system (1)-(6).
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Note: Apparently, .this type of methodology can be applied

to any unsolved system of differential equations,:of the first or-

der. Its application in this case is justified by the fact that

functions L, p, . vary slowly versus # and i for a rapidly twi-

sted satellite.

As calculations for model problems have shown, the spacing

of integration, generally speaking, increases with the passage

of time. This bespeaks the fact that the deciding factor in se-

lecting spacing is the behavior of p and (the satellite becomes

less twisted and the spacing increases; p and a will no longer

be so slowly changing functions). According to the proposed pro-

gram, of course, we can predict further rotation of this satel-

lite--no longer rapidly twisted. But with-too small L, the afore-

noted change in system (1)-(6) may already bring about significant

errors; thus the program should not be applied in the case of a

slightly twisted satellite--in that case we should use the Euler

equations.

4. Averaging Equations of a Nonsymmetrical

Satellite

By analogy to how: the equati6ns:! for. symmetricali satellites

are written in Beletskiy's work [2], let us give the notation of

the corresponding equations for a:nonsymmetrical AES. We will

write them with the "aerodynamic" variables E, X, since with these
variables it is convenient to integrate and the equations them-,

selves are more compact to write.

In writing these equations, we will take into account all

factors which affect the secular evolution of rotary motion (ex-

cept moments of the forces of light pressure).

10



The equations can be written in the same form as for the

case of a symmetrical satellite, namely:

" = a+ ,-+AO+'+I6H,

L= (M" cos X-M" sin X)sin O+M" cos O8-pL,
dcos% " a +I., (65)

dt

MX, Y, ,= MAy, Z+ MX" y, z,

P= const,

where Xa, a are aerodynamic terms, Xd, ed-gravitational and /110

part of the aerodynamics, A',O' --terms governed by orbital evo-

lution, X ,  --magnetic terms, Mda , fda--terms of aerodynamicnn dnx, y, z
dissipation, M f --terms governed by eddy currents. The

x, y, z,
equations are written for the case of a circular orbit.

Let us discuss the part of aerodynamic and gravitational

terms. The general theory of rotary satellite motion caused by

perturbations which have a force function is applicable to the

case of gravitational and part of the aerodynamic.

Let us note that in a circular orbit, we must take into

account only the term with

27t

2 a (l+cos) dV

since the other quantities Ii yield zeroes. Thus, let us write

-=-N 1- sin ) cos O sin ,

i--j=-N 1- -- sin" I) sin 0 sin k cos X,

where it is posited that

11



N= Lx+Iy-2/z+3 -L 1 X

XK (k)-E (k) 1  par,
k -(k) j 2L

k. X = ( Tz-L2)

z-ly) (L-2T.x)

Iz :>ly>/.

(66)

Let us write the terms governed by orbital evolution (circular

orbit). They will appear as:

'= --9 (sin i+cos i ctg 0 sin x), (67)
'=c os i Cos X.

Here the derivative of longitude of the ascending node is equal

to

= 3 I,R: cos,
2 (R 3-+h)2 cs,

= (1082,65 ±0,02)10-". (68)

In order to perform averaging with respect to c and p in magnetic
perturbing moments in a circular orbit, we should make one sup- /111

position: inherent magnetic moment of the satellite and the mag-

netic moment induced in the soft iron of the satellite are direc-

ted along axis cz. If this condition is not fulfilled, we should

use non-averaged controls. If this condition is fulfilled, the

magnetic terms will appear thus:

!L cos 4 (Ioto +ip) + k .1 - sin" 8) X

R 1 4. n ), (69)

" 91L {-COs B (icxJ-P ) ± R k ,, (1-- - sin2  X

12 X (. .



where it has been designated that

a= cos 0 cos i+ sin 0 sin X sin i,

P= cos 0 sin i-sin 0 sin X cos i,
ao= -cos i+ctg 0 sin X sin i,

Pe= -sin i-ctg 0 sin X cos i,
3ax=cosXsini, px=-cosXcosi, I =-sinicosi,

, 3 •3 27
-I=0, l=1 2 i - sin2 i + 27 in, (70)

9 3 9=9 sin i J 2 V si i cos - sin ,

27 *2 __0,315( R3 h )3
S sin2i cos 2 i; 0,315,

k,,

The greatest problem is in writing the terms governed by

eddy currents, because we can not write averaged equations simi-

lar to (1.4), (1.5) [2]. But to take into account this factor,

we can use equations (9.22). We also assume that the eddy cur-

rents lead to the formation of an additional magnetic moment,

directed along axis cz. The terms governed by eddyf currents can

be written thus:

S Lsin ( os + MAsin) , (71)

L[(M cos X-MA sin X) cos 0-Ml" sin 0],

13



where it is posited that /112

Ma"= cos i Mx+sin iMi,
M M=-sini M -+cosi M,

(72)

MY=-H [(J +I;) )_'zjxj,
R z ii+ ix-, 7 (73)

aH - 0,315 / )Ra , 1=cosilx-sinily,

1,= sinilx+cos ily, 1;21,
S.lx=L cos 8,

,y= -L sin 0 sinX,,
1,=L sin 0 cos .

Furthermore we will find that

fAH=Kicos5sin 2 0. i (74)

The term of aerodynamic dissipation, by analogy with (74),

will be written thus:

Pf"=KcosOsin2 a. (75)

Thus, system (1)-(6) is written with an allowance for all fac-

tors. The system was solved numerically by the Runge-Kutta method

on an M-20 computer (the model problem). The results of inte-

gration are as follows: in 50 orbits of the satellite L and cos

6 varied roughly by 2%, and X and e negligibly.
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5. Methods for Defining Unknown Parameters

in terms of the Results of Flight Tests

10. Let us first formulate the problem. In equations (1)-

(6), the initial values and parameters DTx , DT, DT, k , k2 , k

are known rather coarsely. We must specify them, if the values of

the functions L(t), p(t), a(t), 8(t) at points ti, t 2, ..., tN

are known from telemetry. Let us designate the values of these

functions at point tj by xij(i = 1, 2, 3, 4). The values of these

same functions and the corresponding values to specific initial

values and parameters will be designated by x . Let us consider
S L(t.) 3

that dispersions of random quantities . , p(t), (t), (t)

whose average values (as was shown above) are known from tele-

metry, are identical. We will use the method of least squares.

For the convenience of writing, let us somewhat alter the /113

notations. Namely

x xij
L (to) L (to)

Let us compose the functional

4 N

S(b, ., b12)= I 1(xij-xj)2, b1=D , ,
i=1j=1

bi, ..., b12 we derive from the condition of local min D. This

minimum will be derived by one of the gradient methods, namely

the method of most rapid descent. The algorithm of the method

is as follows.

Let us select the initial approximation (data are coarse

values)
(bOl, ..., b2)15bo
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+1 -2 --n +n+l
The sequence of vectors b , b , . .is calculated until b and b

with the required accuracy will coincide: bn+l will be the desired

vector.

The sequence is calculated thus:

C+'= b"-- grad (b"),

where the constant A is such that the functional (bn - pgrad(n))

attains its local min at p = A. The method described above has

been realized in a program for the case of averaged equations.

20. Moreover, the specification of the parameters (kx , k y

kz, kl', k 2 , k3) was done by yet another method. Its essence is

as'.follows. Given from telemetry that we know L, p, 0, 8, 4 , ,

for moments of time tI , .... , t We use formulas (l)-(6) to de-

,fine' the perturbing moments M1, M2 and M3. The derivatives of L,

p, ...,rp are derived with the aid of formulas of numerical dif-

ferentiation.

Refinement of the desired parameters in terms of obtained

values of Mi, M2, and M3 was done by the method of least squares.
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